
VIDMP3: Video Editing by Representing Motion with Pose and Position Priors

Sandeep Mishra

University of Texas at Austin

sandy.mishra@utexas.edu

Oindrila Saha

University of Massachusetts Amherst

osaha@umass.edu

Alan C. Bovik

University of Texas at Austin

bovik@ece.utexas.edu

Q K V

+

“A silver jeep driving 
down a countryside”

Motion Module

T2I Model

MOTIONGUIDE

Reconstruction Loss

Source Video


X
N

C
N

⊙ D
N

Inversion

C
N

⊙ D
N

“A ghost floating”

Edited Video

Reconstructed

 Video+ ϵ

🔥

❄

A

B

C

Cross-Domain Edit

Structure Edit

Personalization

Boat Log of wood Candle

Airplane Helicopter Hot air balloon

Anything-v4.0

Woman Hatsune Miku

Figure 1. VIDMP3. We present a novel video editing technique that can perform challenging video editing tasks guided by pose and

position priors. We introduce a MOTIONGUIDE module that learns a generalized motion representation from correspondence and depth

maps. We inject the features of this module to the “Value”s of the temporal self-attention layer of a T2V initialized with a T2I model.

During inference, we use the correspondence and depth maps of the source video to generate a novel motion-preserved video. VIDMP3

enables the generation of challenging edits, including A⃝ Cross-Domain editing, where objects with vastly different semantic meanings can

be generated, B⃝ Structure editing, where structure of the object can be changed significantly, and C⃝ adaptation to various T2V editing

tasks such as personalized editing.

Abstract

Motion-preserved video editing is crucial for creators,

particularly in scenarios that demand flexibility in both the

structure and semantics of swapped objects. Despite its po-

tential, this area remains underexplored. Existing diffusion-

based editing methods excel in structure-preserving tasks,

using dense guidance signals to ensure content integrity.

While some recent methods attempt to address structure-

variable editing, they often suffer from issues such as tem-

poral inconsistency, subject identity drift, and the need for

human intervention. To address these challenges, we intro-

duce VIDMP3, a novel approach that leverages pose and

position priors to learn a generalized motion representation

from source videos. Our method enables the generation of

new videos that maintain the original motion while allow-

ing for structural and semantic flexibility. Both qualitative

and quantitative evaluations demonstrate the superiority of

our approach over existing methods.

1. Introduction

The strong generation capabilities of text-to-image (T2I)

diffusion models have encouraged the adoption of these

models for video generation and editing tasks, owing to

the simple architectural changes required over T2I mod-

els to enable them to generate videos. Inclusion of tem-

poral self-attention layers and inflating 2D convolutions to

pseudo 3D convolutions facilitates the generation of videos

conditioned on text. While some approaches train text-

to-video (T2V) models on large-scale text-video paired



datasets [4, 15, 16, 37, 52], others explore a more data-

efficient technique. These methods [13, 38, 42, 48] train

a T2V model on a single video and use the learned pri-

ors to generate novel videos using edited text prompts.

T2I models have also been used for zero-shot video edit-

ing [6, 8, 11, 27, 34] by utilizing structure from a specific

source video.

Generative video editing is a task of remarkable interest

to creators which enables them to create novel videos which

can borrow information from a captured real video. One of

the most important and under-explored sub-areas is where

only motion is preserved from a source video and mimicked

to generated a new video. This is the most general use-

case of generative video editing, whereby the motion of the

subject in the source video is preserved but structure, ap-

pearance, and semantics remain modifiable. Apart from the

clear benefits of reducing costs and time for video creators,

this serves an important case where a creator would want to

imitate the motion of a real subject and transfer it to sub-

jects that might be hard to capture following that specific

motion e.g., imaginary concepts following the motion in a

real video.

In a data efficient setting where we want to use only

a single source video to generate an edited novel video,

changing the structure and domain of the subject has been a

challenging task. Zero-shot video editing techniques heav-

ily rely on the structure of the source video, and are thus

unable to deviate much from the source concept. One-

shot tuning techniques have shown sufficient promise, but

struggle with either shape leakage, quality issues, or fail in

cases of cross-domain editing. This can be attributed to un-

constrained optimization over the source video [42] or too

sparse external control [13].

We embark on learning a generalized motion represen-

tation that distentangles spatial properties of subjects from

their motion. Motion of subjects is perceived by humans

as the combination of their position in a 3D space and their

internal pose. Thus, we choose to inject an external rep-

resentation learned from pose and position priors to guide

the T2I diffusion model. We hypothesize that motion can

be represented as a combination of spatial correspondence

maps, depth maps and 2D positional encodings. The corre-

spondence maps provide signals for the internal pose vari-

ation of a subject over video frames, while the depth maps

and positional encoding signify the 3D positions of the sub-

ject in each frame. We introduce a novel MOTIONGUIDE

module which utilizes these maps to learn a generalized

representation of motion. First, we show a proof of con-

cept where MOTIONGUIDE can be used to learn the 3D tra-

jectory and rotations of a simple moving cube. We show

that the learned module is invariant to shape changes of

the object but sensitive to motion changes. This shows

that this module can be effectively used to induce motion-

preservation with variations in shape when appropriately

injected into a T2V diffusion model initialized with a T2I

model. We present VIDMP3 where we inject the spatially

pooled features of MOTIONGUIDE into the “Value”s of the

temporal self-attention layers of the T2V model. Essen-

tially, this allows the model to understand added context

in frame-to-frame correspondence, thus boosting temporal

consistency. We show that VIDMP3 robustly edits subjects

with significant structure and semantic shift from the sub-

ject in the source video. We also scale our method to Stable-

Diffusion-XL [32], which has not been explored previously

for video editing. We show that we are able to generate

more diverse concepts with VIDMP3 SD-XL. In summary,

our contributions are as follows:

• A MOTIONGUIDE module that learns generalized motion

representations from pose and position priors

• VIDMP3, which utilizes the MOTIONGUIDE module to

inject external guidance to the “Value”s of the temporal

self-attention module

• Adaptation to various T2I diffusion models including

scaling to SD-XL.

2. Related Work

Diffusion models have been extensively explored for video

editing due to their strong generation capability and abil-

ity to conform to various kinds of conditions. Previous

video editing techniques can be classified into two gen-

eral categories: 1) Structure-preserved Video Editing, and

2) Motion-preserved Video Editing. We discuss prior work

in these two domains in detail below.

2.1. Structure­preserved Video Editing

These techniques aim to edit the video while preserv-

ing structural information from the original video by re-

lying on various cues such as depth, edge, optical flow,

or attention map information. Gen-1 [9], Ground-a-

video [18], and RAVE [20] utilize depth maps for guid-

ance, while CCEdit [10], ControlVideo [50], and MAsk-

INT [28] extend to the use of various controls including

depth, boundary, and line drawing. MoCa [44], Rerender A

Video [46], and FlowVid [25] use optical flow as guidance.

VideoP2P [27], FateZero [34], Vid2Vid-Zero [41], and

Edit-A-Video [36] inject attention map information from

the original video while denoising the edited video. Token-

Flow [11], COVE [40] and DreamMotion [19] use dense

spatial correspondences among frames to ensure consis-

tency. VidTome [24] develops a method that uses any of the

above discussed types of guidance techniques. Codef [30],

VidEdit [8], and StableVideo [6] learn a canonical represen-

tation of the video. Editing this representation allows high

temporal consistency, but restricts changes in low-level fea-

tures. In contrast to these methods, VIDMP3 allows signif-

icant structural and semantic changes in the subject of the



given source video.

2.2. Motion­preserved Video Editing

These methods aim to extract the motion from the source

video while allowing significant structural changes in the

edited video generated with the same motion.

One-shot tuning. Tune-a-video [42] attaches a mo-

tion module to a pre-trained T2I model, and introduces

sparse causal self-attention which uses features from other

frames to compute self-attention on each frame. Tune-A-

Video overfits the motion module to a single video, which

is then used to generate novel videos at test-time. We find

that Tune-a-Video suffers from severe structure leakage and

temporal inconsistency, due to unconstrained training of the

motion module on the input video.

VideoSwap [13] alleviates structure leakage by injecting

keypoint correspondence information and keeping the mo-

tion module frozen. However, VideoSwap requires human

effort in selecting or editing the keypoint positions. For

cases which require significant size changes, VideoSwap

creates a Layered Neural Atlas [22] of the video, in which

the user is required to make desired edits. Training this

LNA is significantly time consuming. Additionally, as a re-

sult of using keypoint correspondence, VideoSwap is inef-

fective at swapping semantically different objects. By con-

trast, VIDMP3 is able to swap objects with considerable

structure and semantic variation, due to injecting a general-

ized representation of external pose and position guidance.

Most importantly, VIDMP3 relies neither on human effort

nor the time-intensive LNA creation process.

SAVE [38] aims to disentangle the structure and mo-

tion of a subject by using a motion prompt that focuses

on moving areas, but suffers from temporal inconsisten-

cies due to leakage in areas surrounding the moving object,

as evidenced in their results. CAMEL [48] injects motion

prompts into the temporal attention module, which is then

learned from the video. By contrast, our method uses ex-

ternal pose and position guidance to learn a more consistent

representation of motion.

Emu-Video [12] attaches an image editing and video

generation adapter over a pre-trained T2I model, which is

then tuned on a dataset of several videos. VIDMP3 instead

extracts various kinds of information from a single video to

generate a novel edited video.

Pose-guided video editing. 2D/3D pose-guided video

editing has been explored specifically for humans and

human-like entities in Follow-Your-Pose [29], Dream-

Pose [21], DeCo [51], MagicPose [7], MagicAnimate [43],

AnimateAnyone [17], EVA [47], and DynVideo-E [26].

VIDMP3 instead explores pose-guided editing in a more

general context with pose being represented using corre-

spondence maps. This representation allows us to generate

subjects which are highly semantically and structurally dif-
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Figure 2. Toy experiment on learning shape-invariant motion.

We trained our MOTIONGUIDE module on the original video and

tested it on videos with 1) shape changes, and 2) motion changes.

We show the frames for each video to the left. From the graph at

the right, it may be observed that the MOTIONGUIDE module is

invariant to shape change but sensitive to motion change.

ferent from the subject in the source video, while accurately

following the motion of the source video.

Propagation from first frame editing. AnyV2V [23]

and I2VEdit [31] use a separate model for editing the first

frame of the video and then propagate the edit to the other

frames. While these methods can significantly change the

structure of the subject, they are limited by the image-

editing technique they utilize. AnyV2V suffers from se-

vere temporal inconsistencies when modeling videos with

significant motion (see Appendix). VIDMP3 instead learns

the motion representation from the source video and jointly

models it across frames.

3. Method

The motion of any object can be represented as a combi-

nation of pose and position in 3D space. Given a video

XN = [x1, x2 . . . xN ] of N frames, we wish to learn only

the motion of the subject in the video. We want to build a

generalized representation of motion using the 3D pose

and position of an object. This representation enables us to

swap objects with significantly different shapes or seman-

tics. We hypothesize that motion can be extracted only us-

ing the dense correspondences within frames CN and the

depth maps per frame DN , without using the frames of the

video XN . CN is useful for representing the 2D position

and pose of the object, while DN represents the 3D po-

sition. First, we present a proof of concept, whereby we

introduce a MOTIONGUIDE module to learn motion using

CN and DN , and show that the learned representation of

the module is invariant to shape changes but sensitive to

changes in motion. Next, we formally describe how the rep-

resentations of this MOTIONGUIDE module can be injected

into a diffusion model to edit videos.



a brown bulldog on roller blades riding down a road in the countryside
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Figure 3. Comparison with prior art on motion-preserved video editing. We consider the challenging cases of A⃝ Cross-Domain Edit

– “silver jeep” −→ “bulldog on roller blades”, and B⃝ Structure Edit – “monkey”−→ “tiger”. It may be observed that in the case of cross-

domain editing, all baselines suffer from severe temporal inconsistencies of the subject. For the case of structure editing, Tune-A-Video

produces a highly saturated video with the head pose not correctly following the pose of the input video. Similarly, FateZero also models

incorrect head pose (see second row of B⃝). For VideoSwap we notice that the tiger has a similar humped shape like the monkey (notice

the yellow circled areas), due to the keypoint correspondences being very sparse and spatially constrained signal. The sparsity of this

signal results in the orientation of the face being inaccurate, resulting in a wrong head pose of the tiger in the middle row. By comparison,

VIDMP3 generates temporally consistent results following the input pose while making necessary changes faithful to the new concept.

3.1. Representing motion with pose and position

We design a MOTIONGUIDE module ϕm that takes as in-

put dense correspondence maps CN and depth maps DN

of the subject of interest in a video. We present the design

of this lightweight module in the Appendix. Essentially, the

module processes CN ⊙ DN with convolution layers, then

concatenates a positional encoding P to each frame. After

another convolution, we average pool in the spatial dimen-

sions and divide by α to form a single-dimensional vector

for each frame MN,d , where α is the ratio of pixels occu-

pied by the object in the frame to the total number of pixels

in the frame. This is then processed by a final linear layer.

The pooling is crucial to our method as it prevents shape and

size leakage. The positional encoding P provides informa-

tion on the 2D location of the values in CN ⊙DN , making

the representation sensitive to the average 2D position, even

after spatial pooling.

For proof of concept, we designed a toy experiment

where the MOTIONGUIDE module ϕm was attached with

a final linear layer to predict the 3D trajectory and rotations

of an object. We rendered a video of a cube following a

specific trajectory and rotations TN,6. The cube is rendered

with different gradient colors on its faces to mimic corre-

spondence maps. We treated the rendered frames of the
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Figure 4. Visualization of correspondence and depth maps. For

two frames of the video of “a dog looking out the window of a car”,

we show the corresponding correspondence and depth maps we

obtain from off-the-shelf models. The depth segmented using the

correspondence map is multiplied with the correspondence map

(right-most column) and provided as input to MOTIONGUIDE.

cube as correspondence maps CN and found depth maps of

each frame, denoted as DN . We trained ϕm on this single

video of the cube to predict T̂N,6 by optimizing:

min
ϕm

∥TN,6 − ϕm(CN ,DN )∥2 . (1)

Given this trained MOTIONGUIDE module ϕm, we used

it to infer on 1) C1
N , D1

N of a positive sample where the

shape of the cube was changed, but followed the same mo-

tion, and 2) C2
N , D2

N of a negative sample where the orig-

inal cube followed a different motion. We present frames of

the original video, and the test videos along with prediction

loss in Fig. 2. It may be observed that the training loss and

loss of the positive sample follow a similar reducing trend,

while that of the negative sample diverges. This shows 1)

that motion can be predicted reasonably using correspon-

dence and depth maps, 2) the learned representation is in-

variant to shape change, and 3) the learned representation is

sensitive to motion changes.

3.2. VIDMP3

VIDMP3, depicted in Fig. 1, utilizes the MOTIONGUIDE

module formulated in the previous section to learn motion

from a source video XN , to generate a new video having

the same motion. We fine-tuned our model on the single

source video XN . We followed the paradigm of Tune-A-

Video [42], where motion modules are inserted into a pre-

trained T2I diffusion model. The motion module consists

of temporal self-attention layers which are computed as:

Attention(Q,K,V) = softmax

(

QK⊤

√
d

)

V, (2)

Q = WQzi,j , K = WKzi,j , V = WVzi,j , (3)

where zi,j is the latent representation of the video at a spa-

tial location (i, j) before the temporal self-attention. We in-

ject the output of our MOTIONGUIDE module into the val-

ues of the temporal self-attentions such that:

V = WV(zi,j + λϕm(CN ,DN )), (4)

where λ is a weighting factor. We chose to inject the exter-

nal features into the values, to add extra context to the loca-

tions the self-attention focuses on. We used the pre-trained

weights of the motion module from AnimateDiff [14].

We updated the spatial self-attention to the sparse causal

variant of Tune-A-Video, where for a specific frame the at-

tention is calculated using the first and previous frame of

the video. Unlike Tune-A-Video which suffers from severe

shape leakage because of over-fitting the full motion mod-

ules on the source video, we chose to keep the motion mod-

ule frozen and inject motion only using the external adapter

MOTIONGUIDE module. This enables us to learn a repre-

sentation space of pure motion disentangled from appear-

ance. We trained this modified network by optimizing:

min
ϕm,ϕu

Ez0,t,ϵ

[

∥ϵ− ϵθ(zt; t, y, ϕm(CN ,DN )∥2
]

, (5)

where t represents the time-step, zt the latents diffused at

time t, y the prompt for the source video, and ϵθ repre-

sents the denoising diffusion model. We optimized only

over ϕm and ϕu. ϕu represents other trainable parameters,

namely WQ of the spatial self- and cross-attention layers,

and WV of the motion modules. Finally, after training, we

used the inverted latents of the source video to sample a

new video with an edited prompt, while using CN and DN

of the source video. We show that this simple formulation

is highly robust and quite general, enabling us to generate

subjects that are significantly different in shape and seman-

tics as compared to the subject in the original video.

4. Experiments

Datasets. We used the same set of 30 videos provided

by VideoSwap which were selected from Shutterstock and

DAVIS [33]. The videos are divided into three categories

– human, animal, and object – where each category com-

prises of 10 videos. For each source video we used three

predefined concepts and three customized concepts, result-

ing in a total of 180 edited videos. Unlike VideoSwap, our

customized concepts involve significant semantic changes.

Implementation Details. We used Stable Diffusion 1.5

as the foundation model for baseline comparisons and also

extended our method to use SDXL for generating more di-

verse concepts. For the SD-1.5 architecture, we primarily

use Chilloutmix [3] pre-trained weights, except for 1) style

editing where we used the original SD-1.5 weights, or 2)

personalized editing tasks. We used the pre-trained motion

modules of AnimateDiff [14] for the temporal self-attention

layers. We uniformly sampled frames at a sampling rate of

4 at their original resolution from the input video to fine-

tune the models. All experiments were conducted on Nvidia

A100 (40GB) and H100 GPUs. We used Adam with a

learning rate of 5e−4 when optimizing the fine-tuning stage
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“a black swan with a red beak swimming in a river near a wall and bushes”

“a paper boat swimming in a river near a wall and bushes”

“a silver jeep driving down a curvy road in the countryside”

“a tall cloth-ghost floating down a curvy with the New York City skyline in background in a dark snowy night”

Figure 5. Scaling VIDMP3 to SDXL. As a novel initiative, we scaled up the T2V model to utilize SDXL as the foundation model. We

show that we can model more diverse concepts using this setup, owing to the stronger generation capabilities of SDXL.

over 100 iterations. We set the MOTIONGUIDE weighting

factor λ to a value of 0.1 for videos with higher ranges of

motion and 0.05 for videos with lower ranges of motion.

The weights of the final linear layer of the MOTIONGUIDE

module are zero-initialized when training so that the out-

put of the MOTIONGUIDE module is zero for the first itera-

tion. We also disabled the bias of the convolution layers of

the MOTIONGUIDE, since we are overfitting on one video

without the need to have any regularization.

To compute spatial correspondence maps, we used the

implementation of SD-Dino [49], which utlizes the inter-

nal deep features of Dino [5] and Stable Diffusion [35] for

this task. For classes not present in the COCO dataset e.g.

“monkey”, we used the off-the-shelf figure-ground segmen-

tation tool RMBG-1.4 [2]. We found correspondence maps

for each frame using the first frame as reference. Depth

maps were found using DepthAnythingV2 [45], which are

then segmented to only contain the subject aided by the ob-

tained correspondence maps. Finally we multiplied the cor-

respondence and segmented depth maps to form the input

to MOTIONGUIDE. We show examples of the computed

correspondence and depth maps for a video in Fig. 4.

Baselines. We qualitatively and quantitatively compared

our model to Tune-A-Video [42], VideoSwap [13], and

FateZero [34]. We found these baselines to be the most

relevant ones delivering the strongest results for motion-

preserved editing tasks using a single video for training.1

We show in the Appendix that first-frame editing methods

like AnyV2V struggle to capture considerable levels of mo-

tion and are highly dependent on the quality of the first

frame generated by their image editing method.

5. Results

Here we showcase some of the various capabilities of

VIDMP3, comparison to baselines, adaptability of our

model to various video editing tasks, scaling to SDXL, ab-

lations over the components of our method, and discuss im-

plementation choices.

Cross-domain Edit. The most important contribution of

VIDMP3 lies in the challenging case of Cross-domain Edit-

ing, where previous methods suffer. In this case, we show

that the subject in the source video can be swapped with

a semantically different subject in the edited video, while

correctly preserving motion. In Fig. 3 we show the instance

“silver jeep” → “bulldog on roller blades,” where VIDMP3

can generate a video where the motion is preserved and the

subject is temporally consistent. We attribute these results

to the external strong motion signal we inject, which al-

lows the model to understand a general sense of position

and pose. We present additional results in the Appendix.

1CAMEL [48] is a related work but does not provide sufficient results,

and omits dependencies required to run their code in their repository.



Structure Edit. Previous methods have shown good per-

formance for the case of structure editing, while keeping

the edited subject in the same domain, e.g., “silver jeep”

→ “Porsche.” This case is much simpler as compared to

cross-domain editing, due to the internal semantic under-

standing of the diffusion model. We show the case of “mon-

key” → “tiger” in Fig. 3, where the edited tiger generated by

VIDMP3 follows the exact same head and hand motion as

the monkey, allowing freedom for the different body shapes

of the tiger as compared to the monkey. We present addi-

tional results for structure editing in the Appendix.

Comparison to baselines. For the two previously de-

scribed cases of Cross-Domain Edit and Structure Edit,

we compared to the previous methods, Tune-A-Video,

VideoSwap and FateZero. For fair comparison, we initial-

ized all baselines with the same pre-trained T2I weights [3]

as ours. Tune-A-Video and FateZero don’t explicitly pro-

vide any external guidance to the model, which lead to

high temporal inconsistencies in the case of Cross-Domain

Editing, where the pre-trained T2I model is not confident

in its outputs owing to semantic changes of the object to

be edited with respect to the source object. On the other

hand, VideoSwap uses explict keypoint correspondences

and guides the model to change the object, but it fails when

the semantic meanings do not remain relevant (e.g.: “silver

jeep” → “brown bulldog”). VideoSwap requires human ef-

fort in marking the positions of 2D keypoints that should

be tracked in the video. It also involves significant time

and human effort to manually edit the position of the key-

points for the target video when there are significant shape

changes. Tune-A-Video generates saturated videos on both

Cross-Domain and Structure Editing, possibly due to over-

fitting the entire motion module on the source video. This

is not true for either VideoSwap or VIDMP3, as all or most

parts of the motion module are kept frozen while learning

an external adapter that has a fixed input. For the case of

Structure Editing, it may be observed that VideoSwap gen-

erated the tiger to be in a bent posture like the monkey, be-

cause fitting to the keypoint correspondence signal was too

constrictive. None of the baselines were able to follow the

head pose of the monkey accurately as can be observed es-

pecially in the second and third row of the generated videos

of all baselines in Fig. 3 B⃝.

By contrast, VIDMP3 generates temporally consistent

videos in both cases while preserving motion from the

source video. This is achieved by computing a pose and

position representative value for each frame, using dense

correspondence and depth maps to learn generalized repre-

sentation of motion. During inference, these representations

help guide motion in the generated videos, and allowing the

text-to-image model more room to explore appearances.

Adaptability of VIDMP3. Since VIDMP3 is based on

an existing T2I model, it can be effectively applied to tasks

other than subject swapping. We show results of using

VIDMP3 for 1) background change, 2) style change, and

3) personalization. For personalization, we attempted both

per-subject personalization, as well as using pre-trained T2I

models that are personalized on more general concepts,

such as Anything-v4.0 [1]. We refer the readers to the Ap-

pendix for qualitative results of these tasks.

Scaling VIDMP3 to SDXL. We also studied scaling to

StableDiffusion-XL which is a stronger T2I model that is

able to represent more diverse concepts. We use AnimateD-

iff’s SDXL motion module, and found that it less effectively

models motion than the motion module of the SD-1.5 ver-

sion. Thus, we identify the specific parameters of the mo-

tion module that contribute to shape leakage and kept them

frozen. More specifically, we found that the feed-forward

layers of temporal self-attention blocks contribute to the

highest leakage. We trained the other parameters namely,

WQ, WK, and WV and projection matrices of the tem-

poral self-attention modules, in addition to the parameters

that we kept trainable in the SD-1.5 version. This enabled

our model to better learn motion while still avoiding leak-

age. We present results of using SDXL within VIDMP3 in

Fig. 5. We show generated concepts that we were not able

to represent consistently using SD-1.5 VIDMP3, such as a

“paper boat” and a “cloth-ghost”. We provide additional

results generated by VIDMP3 SDXL in the Appendix.

Ablations. We conducted ablations over various compo-

nents of our method and implementation choices. Fig. 6

depicts the effect of using only correspondence maps, only

depth maps, or concatenated depth and correspondence

maps as input to MOTIONGUIDE. We also show the ef-

fect of disabling the MOTIONGUIDE. For all these cases,

we find that the motion is modeled incorrectly, with a much

subdued range and incorrect orientations per frame.

Evaluation. We quantitatively compared our method

against previous SOTA models using both automatic and

human evaluations. We provide a detailed discussion of the

evaluation settings in the Appendix. We conducted a volun-

tary, controlled laboratory human study to gather opinions

expressive of 1) Subject Identity, 2) Motion Alignment, 3)

Temporal Consistency, and 4) Overall Preference for video

subject swapping. The results of this evaluation, shown in

Fig. 7, indicate a clear preference for our method.

Time Cost Analysis We recorded the time required to run

each component of VIDMP3 to edit a 16 frame video clip

on an Nvidia A100 GPU. This includes 1) Preprocessing:



Source VideoNo MOTIONGUIDE MOTIONGUIDE - only corr. MOTIONGUIDE - only depth MOTIONGUIDE - corr. depth cat. VIDMP3
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Figure 6. Ablation over various components of our method. For the case of “car” → “bike”, we see that all other implementations

including disabling MOTIONGUIDE, providing different inputs to MOTIONGUIDE such as only correspondence maps, only depth maps

or concatenation of depth and correspondence maps, results in incorrect and lower range of motion. VIDMP3 uses MOTIONGUIDE with

multiplied correspondence and depth maps as input and imitates the motion the subject in the source video correctly.
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Figure 7. Human opinions on 1) Subject Identity, 2) Motion

Alignment, 3) Temporal Consistency, and 4) Overall Preference,

averaged over 10 participants and 180 edited videos.

which involves computing the correspondence and depth

maps. The correspondence map computation required ap-

proximately 4s per frame, or 64 seconds over 16 frames.

The depth map computation required approximately 2s per

frame, or 32 seconds over 16 frames. The preprocessing

step used about 100 seconds overall. 2) Training: where

the MOTIONGUIDE module was trained over 100 iterations

which expended about 3 minutes of compute time. And,

lastly 3) Editing: when we generated the edited video using

inverted noise from the source video. The DDIM inversion

process of 50 steps required about 30 seconds. The back-

ward process to generate the edited video consumed about

30 seconds as well, resulting in a total of 60 seconds. Over-

all, the complete process, from preprocessing to generating

the final edited video required about 6-7 minutes.

6. Limitations and Discussions

There can be multiple choices of features that could repre-

sent the pose and position of subjects, and that can be in-

jected externally to a diffusion model to guide motion, e.g.

injecting Diffusion Correspondence (DIFT [39]) features.

However, our choice of 2D correspondence and depth maps

is highly efficient since it only requires three channels of

input, and is also a cleaner signal of explicit motion with-

out any leakage of extra information. While VIDMP3 can

generate subjects with significant structural and semantic

differences relative to the source video, we cannot explic-

itly control the size of the subject. For example, in the case

of “black swan” → “paper boat” in Fig. 5, observe that the

generated paper boat is large and of a similar size as the

swan. Additionaly, our method is dependant on the quality

of correspondence and depth maps obtained. However, for

all of our evaluation videos, we find that the off-the-shelf

methods for obtaining these maps perform well. Scaling

video editing to multiple subjects has been studied in previ-

ous work, but has not been explored here. For such scenar-

ios, one approach would be to generate separate correspon-

dence maps for each of the various subjects of interest, and

inject each using separate MOTIONGUIDE modules. We

leave this direction of research for future work.

7. Conclusion

We presented VIDMP3, a novel video editing technique

based on T2I models, which utilizes pose and position pri-

ors to generate motion-preserved videos based on a source

video. We introduce the MOTIONGUIDE module, which

learns generalized motion representations from spatial cor-

respondence and depth maps. These representations are

injected into the temporal self-attention layers of a T2V

model initialized from a T2I model, thus forming VIDMP3.

We evaluated VIDMP3 on challenging video editing tasks:

1) Cross-Domain Editing, and 2) Structure Editing. We

observed that VIDMP3 can generate objects with signif-

icant structural and semantic changes relative to the sub-

ject in the source video, while maintaining temporal con-

sistency. We show qualitatively and quantitatively that our

method improves over previous strong baselines on the task

of motion-preserved video editing. Additionally, we scaled

our method to use SDXL as the base T2I model, which is

a novel effort in the area of video editing. We explored

the adaptibility of our method on various video editing

tasks, including personalized editing, background editing,

and style editing. Despite its potential to enhance creative



workflows, motion-preserved video editing without rigid

structural constraints remains a relatively under-explored

domain. VIDMP3 addresses this gap by introducing a novel

approach that maintains temporal coherence while allowing

flexible content modification, laying the groundwork for fu-

ture research and developments in this area.
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