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Figure 1. C3DAG : A pipeline to generate highly detailed and anatomically accurate 3D Animals. A⃝ A web-based tool that lets the
user modify keypoints in 3D space and generates balloon animals using simple geometric shapes such as spheres, cylinders, and cones with
a single button click. The figure depicts the 3D pose and skeleton of an elephant and its generated balloon animal mesh. B⃝ We illustrate our
method to create a pose consistent animal by sampling 2D pose control images from a 3D pose based on camera parameters. The sampled
2D poses are used as input to our tetrapod-pose ControlNet along with a text prompt and a NeRF rendered image to backpropagate Score
Distillation Sampling (SDS) gradients to the learnable NeRF parameters θ.

Abstract

Recent advancements in text-to-3D generation have
demonstrated the ability to generate high quality 3D assets.
However while generating animals these methods under-
perform, often portraying inaccurate anatomy and geome-
try. Towards ameliorating this defect, we present C3DAG,
a novel pose-Controlled text-to-3D Animal Generation
framework which generates a high quality 3D animal con-
sistent with a given pose. We also introduce an automatic
3D shape creator tool, that allows dynamic pose generation
and modification via a web-based tool, and that generates a
3D balloon animal using simple geometries. A NeRF is then
initialized using this 3D shape using depth-controlled SDS.
In the next stage, the pre-trained NeRF is fine-tuned using
quadruped-pose-controlled SDS. The pipeline that we have
developed not only produces geometrically and anatomi-
cally consistent results, but also renders highly controlled
3D animals, unlike prior methods which do not allow fine-
grained pose control.

1. Introduction
The past decade has observed dramatic improvements in
the field of computer vision, especially on 3D generative
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tasks. The introduction of denoising diffusion models and
implicit representations for 3D reconstruction has dramat-
ically improved the quality of generative art. DreamFu-
sion [23] showed that knowledge of 2D image generative
models can be utilized to guide generation of 3D objects.
These concepts alleviate the need for substantial datasets
of 3D ground truth, by lifting 2D images and videos into
3D shapes by distillation. With this in mind, we focus on
the controlled generation of 3D animals guided by text and
pose, with the specific goal of generating anatomically plau-
sible 3D animals.

3D animal generation has been previously studied, yet
current methods still suffer by the creation of problematic
anatomical distortions such as multiple heads or limbs, or
displaced or missing body parts. Attempts at tackling these
problems, such as PerpNeg [2], have improved the quality
of generation but only in selective cases. Another inher-
ent issue with distillation based methods is the amount of
time required to conduct test-time optimization. Although
it is not possible to avoid test-time optimization when gen-
erating highly detailed 3D assets, efforts to reduce the time
required for optimization is an important consideration.

Another approach to generate 3D animals involves 3D
Morphable Models (3DMMs) which are parametric models.
While this approach can generate high quality 3D shapes,
due to the time-consuming data collection process of 3D



scanning, the diversity of generated animals is quite lim-
ited. Some methods utilize 2D images and videos to create
banks of such models to expand the range of animals they
can generate, but out-of-domain generation remains an un-
solved problem with this approach. Methods such as Mag-
icPony [31], which use images and videos to learn paramet-
ric models, are unable to capture fine details and end up
completely omitting tails and other shape details resulting
in low quality 3D meshes.

DreamWaltz [9] demonstrates the use of SMPL [15]
based initialization and projected 2D poses to generate
highly controlled 3D human-like avatars, while usually re-
ducing inaccuracies in the generated asset. Animals take on
a tremendous number of different shapes and body propor-
tions, so starting from an initialization using 3DMM based
models like those generated by SMPL is not viable, as they
have limited diversity. Towards remediating these limita-
tions, we make the following contributions:
• An automatic 3D shape creator tool that generates a naive

3D shape and pose which can be used to initialize a NeRF.
• A tetrapod-pose guided ControlNet trained on a diverse

dataset including mammals, reptiles, birds and amphib-
ians to provide highly controlled guidance via Score Dis-
tilation Sampling (SDS).

• We combine (a) and (b) in an efficient two-stage pipeline
that is able to generate high quality and anatomically con-
sistent 3D animal assets. Our method, which we call
C3DAG, is efficient, and produces a high quality animal
much faster than current SOTA methods.

2. Related Work
Generating 3D assets without specific conditions requires
understanding the diverse distributions of 3D data. There
are two primary strategies: explicit and implicit. Struc-
tured representations such as point clouds [1, 17], voxel
grids [13, 28], and mesh models [34] are categorized as
explicit methods. Implicit techniques generally rely on
abstract representations, such as signed distance functions
(SDFs) [6, 7, 20], tri-planes [4], the parameters of multi-
layer perceptrons (MLPs) [8], and radiance fields [16].

The recent surge in text-to-3D asset generation research
has been significantly fueled by the availability of vast
datasets of text-image pairs and the success of text-to-image
generative models. These innovations have paved the way
for the adaptation of pre-trained text-to-image models into
the 3D domain, primarily those that are CLIP-guided, or
are 2D diffusion-guided. CLIP-guided methods such as [10,
21] leverage cross-modal matching models like CLIP [24]
for text-to-3D conversion, whereas diffusion-guided strate-
gies utilize text-to-image diffusion models [5, 35], like Im-
agen [26] and Stable Diffusion [25], to generate 3D as-
sets from textual descriptions. The latter has been noted
to deliver superior text-to-3D generation performance, em-

ploying techniques such as Score Distillation Sampling
(SDS) [23], which refines noise in images captured from
NeRFs [19], and Score-Jacobian-Chaining [29], which ag-
gregates image gradients into 3D asset gradients.

The field of 3D animal generation has made significant
progress thanks to groundbreaking studies that have pro-
vided new methods and insights for modeling the complex
structures and movements of animals in 3D. SMAL [36] in-
troduced a method to fit a parametric 3D shape model, de-
rived from 3D scans, to animal images using 2D keypoints
and segmentation masks, with extensions to multi-view im-
ages [37]. Subsequent efforts, such as LASSIE [32], have
focused on deriving 3D shapes directly from smaller image
collections by identifying self-supervised semantic corre-
spondences to discover 3D parts. Despite these advances,
the limited diversity of currently available 3D assets con-
fines most research [11, 30, 31] to the production of 3D
models that are both class-specific and small scale.

3. Method

We propose C3DAG: Controlled 3D Animal Generation,
which is an efficient two-stage approach to generate high-
quality 3D assets visually representative of posed tetrapods,
including birds, animals and reptiles. The first stage initial-
izes a NeRF to a generic balloon animal created using our
automatic 3D shape creator tool. The second stage refines
the initialization by using occlusion aware quadruped-3D-
pose consistent Score Distillation Sampling (SDS) to gen-
erate high quality 3D animal assets. Unlike DreamWaltz
[9], we avoid using 3DMM models, since they are always
limited to a fixed set of animals, thus enabling C3DAG to
generate a more diverse set of fauna including quadruped
land animals, reptiles and birds. We also introduce control
scale and guidance scale annealing, ensuring that the 3D
optimization is able to fully utilize the diversity and qual-
ity of Stable Diffusion. See Supplementary Sec. 6 for more
details about the prelimanary concepts used in this article.
Hereafter we describe each aspect in detail.

3.1. 2D Pose guided ControlNet

Following the human-pose ControlNet introduced in the
original paper, we train a ControlNet that can produce vari-
ous animal images including quadrupeds, reptiles and birds
using the same set of 18 keypoints. We introduce data aug-
mentations such as random rotations, translations, and scal-
ing, so that the model is robust against various factors such
as occluded poses and different scales of animals. This is
crucial in the 3D generation stage as the randomly sampled
camera views of a 3D skeleton will often include heavy oc-
clusions. We provide more details in the section on Imple-
mentation Details.
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Figure 2. Comparison with text-to-3D generation guided by 2D diffusion. Given the prompt as shown, we qualitatively compare with
the open-source version of Dreamfusion and HiFA using their default settings. For both of these we append “, full body” to the prompt. It
is clearly observed that both prior work suffer from various inconsistencies producing multiple heads or limbs. Stable Dreamfusion usually
produces lower details in textures. HiFA produces high-quality textures but almost always produces anatomically incorrect animals. We
provide more results in supplementary.

3.2. NeRF initialization

To conduct NeRF pre-training using depth ControlNet,
DreamWaltz uses the neutral SMPL mesh. However ini-
tialization using a single generic model is ineffective for
generating tetrapods, as they vary vastly in shape and size.
Existing parametric models such as SMAL [36] also can-
not be used, since they represent only a small set of animals
that does not include any birds or reptiles. Another para-
metric model called 3DFauna [12], has wider diversity, but
also fails to represent elephants, and appendages like tails in
certain animals, as evidenced in the results in their original
paper and website. To remediate these issues, we instead
resort to an automatic method of generating an initial 3D
mesh given a 3D skeleton, as described in Sec. 3.3. The
effect of using this pre-training is shown in supplementary.

3.3. Generating 3D pose and shape

We employ a set of 18 3D keypoints and 18 bone connec-
tions to represent a generic body pose, as visualized in Fig. 1
A⃝. To enable the modification of the 3D pose we created
a simple THREE.js web tool that provides a clean UI to
move the 3D keypoints around. The same tool also allows
the user to initialize the 3D shape using spherical, cylindri-
cal and conical meshes to form the head, limbs, tails, and
nose, respectively. The parameters of the constructive com-
ponents are tunable, enabling the creation of balloon ani-
mals of different shapes and sizes. The combined compo-
nents are then re-meshed into a single mesh, which is then
used in the pre-training stage using SDS, with depth Con-
trolNet as the guidance.

3.4. 3D Aware Score Distillation Sampling

Given the input 3D keypoints we project 2D poses onto the
camera coordinate system, then use the projections as con-
trol images when generating pose-based-guidance signals
from our trained Tetrapod-Pose guided ControlNet. Since
the 3D pose is fixed, this makes it possible to produce 3D
consistent animal views, ensuring a high quality reconstruc-
tion. We illustrate this in Fig. 1 B⃝. It is important to
note that C3DAG uses no 3D ground-truth data unlike MV-
Dream [27] or Zero-1-2-3 [14], instead purely lifting 2D
poses to 3D, guided only by training on 2D image datasets.
We show that without pose control, other 2D diffusion SDS
guided methods fail to maintain geometric and anatomic
consistency (Fig. 2). However, since ControlNet is trained
using a limited number of images from datasets that contain
annotated poses, exploiting the quality and diversity learned
by stable diffusion is important. Animal pose datasets in-
herently consider occlusion, as only visible keypoints are
annotated. In light of this, we deployed a more generic
variation of occlusion culling than that in DreamWaltz, to
control the visibility of each individual part of the head (left
eye, right eye, and nose) depending on the view-description.
We utilized randomly acquired camera parameters to deter-
mine the view description, including: front, left-side, back,
right-side, top and bottom.

4. Implementation details
ControlNet Training: We used annotated poses from the
AwA-pose [3] and Animal Kingdom [22] datasets to train
ControlNet in a similar way as the original, which uses sta-
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Figure 3. Comparison with parametric model based method.
Given the input image 3DFauna fails to capture high-frequency
details and follow the input image (see tail), whereas our method
produces a highly detailed animal given input pose and text, which
closely follows the input pose control.

ble diffusion version 1.5. AwA-pose consists of 10k anno-
tated images covering 35 quadruped animal classes, while
Animal Kingdom provides 33k annotated images spanning
850 species, including mammals, reptiles, birds, amphib-
ians, fishes and insects. From a combined set of 43k sam-
ples, we carefully selected a subset including only mam-
mals, reptiles, birds, and amphibians. We also eliminated
any sample having less than 30% of its keypoints annotated.
The curated dataset consists of 13k annotated samples. To
increase diversity in learning, and to improve test-time gen-
eration at any scale and transformations, we used a com-
bination of data augmentation strategies consisting of ran-
dom rotations, translations, and scaling while training. The
model was trained over 229k iterations with a batch size of
12, a constant learning rate of 1e−5, on a single Nvidia RTX
6000. The model converged after around 120k iterations
and would not overfit even up to 200k iterations, owing in
part to the augmentation strategy.

3D Pose and Shape generation: We used the following
18 keypoints to represent every quadruped: left eye, right
eye, nose, neck end, 4 × thighs, 4 × knees, 4 × paws, back
end, and tail end. For the upper limbs of birds, i.e. wings,
their front - thighs, knees, and paws are defined in accor-
dance with how their upper limbs move. We began with an
initial pose of a tiger from SMAL, and modify its keypoints
using the balloon animal creator tool. An example of this
process and the tool UI is depicted in Fig. 1 A⃝. After appro-
priate modification of the pose the user can press the button
to create mesh around bones. This button press invokes calls
to various functions defined to create each body part, based
on their natural appearances using simple mesh components
such as ellipses, cylinders, and cones. The combined mesh
and the corresponding keypoints can be downloaded by an-
other button click.

Mesh depth guided NeRF initialization: The mesh
downloaded in the previous step was used to provide depth

maps to the pre-trained depth guided ControlNet, which
produces the gradient loss by SDS, which in turn is used
to pre-train the NeRF. The pre-training helps achieve a rea-
sonable initial state for the NeRF weights, which can then
be refined in the final pose-guided training stage. The dif-
fusion model was pre-trained for 10,000 iterations using the
Adam optimizer with a learning rate of 1e − 3 and a batch
size of 1. During training, the camera positions were ran-
domly sampled in spherical coordinates, where the radius,
azimuthal angle, and polar angle of camera position were
sampled from [1.0, 2.0], [0, 360], and [60, 120].

Pose-guided SDS for NeRF fine-tuning: Finally, we
fine-tune the NeRF using the pre-trained ControlNet to pro-
vide 2D pose guidance to SDS. The gradients computed us-
ing the noise residual from SDS was weighted in a similar
manner as DreamFusion, where w(t) = σ2

t and t was an-

nealed using t = tmax − (tmax − tmin)
√

iter
total iters . We

set tmax to be 0.98, tmin to be 0.4. Similar to the previ-
ous stage, we trained the model over total iters = 10, 000
using the same settings for the optimizer. Using cosine an-
nealing, we reduced the control scale from an initial value
of 1 to a final value of 0.25, while updating guidance scale
as ω = ωinit · (1 + iter

total iters ), where ωinit = 50. These
settings helped reduce the impact of ControlNet gradually
over the training process, while improving quality by grad-
ually increasing ω of classifier-free guidance. The camera
positions were randomly sampled as in stage 1, as were
the radius, azimuthal angle, and polar angle of the cam-
era. The 3D avatar representation renders “latent images”
in the latent space of R64×64×4 following LatentNeRF [18],
where the “latent images” can be decoded into RGB im-
ages of R512×512×4 using the VAE decoder of Stable Dif-
fusion [25].

5. Discussion and Conclusion

We showed our method performs consistently well (Fig 2)
while Stable DreamFusion and HiFA usually produce phys-
ically implausible or low-quality assets. It is important to
note that HiFA, which is a current SOTA model, requires
about 7 hours on a 80GB A100 GPU, while ours needs only
about 20 minutes on the same setting. Fig 3 shows that our
generated animal contains much more detail than the one
produced by 3DFauna [12]. Our method currently requires
some human effort to re-position 3D keypoints in our bal-
loon animal creator tool. It is a direction of future work
to fully automate this process. To summarize, we present
C3DAG – an efficient method to generate anatomically
and geometrically consistent 3D animals. We contribute 1)
a 2D Tetrapod-pose ControlNet trained on mammals, am-
phibians, reptiles and birds, 2) a tool to create 3D balloon
animals automatically given 3D keypoints, and 3) a method
to pipeline 1) and 2) to create high quality 3D animals.
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6. Preliminaries
Recent works have shown impressive results in 2D and 3D
content generation using a combination of the following:
• Diffusion Model:

Generative pre-training on extensive image-text datasets
using denoising diffusion models serves as effective pri-
ors for text-to-3D generation. These models undergo two
primary processes:
Forward Process: This involves incrementally adding
noise to the data x ∼ p(x), transforming it towards a
Gaussian distribution over T steps. The noise-augmented
data at step t is described by:

zt =
√
αtx+

√
1− αtϵ, ϵ ∼ N (0, I),

where αt =
∏t

s=1 αs and αt ∈ (0, 1) as part of the pre-
defined noising schedule.
Backward Process: In this phase, the model learns to re-
verse the noise addition, aiming to reconstruct the orig-
inal data from its noised version. The models learns to
estimate the noise by minimizing

Lt = Ex,ϵ∼N (0,I)

[
∥ϵ− ϵϕ(zt, t)∥2

]
.

This dual process enables the diffusion model to accu-
rately estimate and reconstruct x from noisy observa-
tions, effectively leveraging clean data from noised coun-
terparts.

• Neural Radiance Fields (NeRF):
Widely embraced for text-to-3D generation tasks, NeRFs
utilize a trainable Multilayer Perceptron (MLP) parame-
terized by θ as their core 3D representation. When ren-
dering, a set of rays r(k) = o + kd are sampled, where
o represents the camera position and d the direction, cal-
culated on a per-pixel basis. The MLP processes each ray
r(k), outputting the density τ and color c for each sam-
pled point. The final color C of a pixel is then determined
by approximating the volume rendering integral using nu-
merical quadrature:

Ĉ(r) =

Nc∑
i=1

Ωi · (1− exp(−τiδi))ci,

where Nc is the number of points sampled along a ray,
Ωi = exp

(
−
∑i−1

j=1 τjδj

)
is the accumulated transmit-

tance, and δi is the distance between adjacent sample
points.

• Score Distillation Sampling (SDS):
Introduced by DreamFusion and further utilized in var-
ious studies, SDS is a method designed to transfer the

Without Pre-training

With Pre-training

Figure 4. Effect of NeRF pre-training using shape generated
by the automatic 3D shape creator tool. The top row shows the
final generated 3D without any initial pre-training stage. This has
visible shortcomings in form of body occlusion as well as extra
volume in the foreground which does not belong to the body of the
animal. In contrast, fine-tuning after a pre-training stage generates
a clean result.

knowledge from a pre-trained diffusion model ϵϕ into
a differentiable 3D representation, enhancing a NeRF
model’s parameters θ. The rendered output x from a
NeRF model can be obtained via x = g(θ), where g signi-
fies a differentiable rendering function. The core of SDS
lies in computing the gradients of the NeRF parameters θ,
formulated as:

∇θLSDS(ϕ, x) = Et,ϵ

[
w(t) (ϵϕ(xt; y, t)− ϵ)

∂zt
∂x

∂x

∂θ

]
,

where w(t) is a timestep-dependent weighting function
and y is the input text prompt.

• ControlNet guided SDS:
A novel approach that extends the principles of Score Dis-
tillation Sampling (SDS) to include conditioning on ad-
ditional image-based information, facilitating enhanced
control when generating 3D models. Like SDS, Control-
Net [33] leverages a pre-trained diffusion model ϵϕ but
also introduces a conditioning image c, which could be a
skeleton/pose map, depth map, normal map, or a combi-
nation thereof, to guide the generation process more pre-
cisely. For a model parameterized by θ, and its output x,
ControlNet refines the gradient calculation of the param-
eters θ by incorporating c, as shown in:

∇θLSDS(ϕ, x) = Et,ϵ

[
w(t) (ϵϕ(xt; y, t, c)− ϵ)

∂zt
∂x

∂x

∂θ

]
,

where w(t) is a weighting function dependent on the
timestep t, y denotes the given text prompt, and c is



the conditioning image that significantly influences the
generation process. This approach benefits by Control-
Net’s innovative method of integrating additional contex-
tual cues into the generative framework, thereby enrich-
ing the model’s capacity to compute detailed and accurate
3D reconstructions using complex conditioning informa-
tion.

7. Impact of NeRF Pre-training
Fig. 4 shows the impact of the NeRF pre-training stage us-
ing depth ControlNet as described in Sec 3.2 using the 3D
balloon animal generated by the automatic 3D shape creator
tool. This shows that using the pre-training stage results in
visibly cleaner results without any body occlusions.
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